Search results for " 60H30"

showing 2 items of 2 documents

Hölder regularity for stochastic processes with bounded and measurable increments

2022

We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov-Safonov regularity result in PDEs. However, the discrete step size $\varepsilon$ has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.

todennäköisyyslaskentamatematiikkaApplied Mathematicsp-harmoniousProbability (math.PR)tug-of-war gamesstochastic processdynamic programming principlelocal Hölder estimatesFOS: Mathematicsequations in nondivergence formp-Laplace35B65 35J15 60H30 60J10 91A50Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)stokastiset prosessit
researchProduct

Mean square rate of convergence for random walk approximation of forward-backward SDEs

2020

AbstractLet (Y,Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk$B^n$from the underlying Brownian motionBby Skorokhod embedding, one can show$L_2$-convergence of the corresponding solutions$(Y^n,Z^n)$to$(Y, Z).$We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in$C^{2,\alpha}$. The proof relies on an approximative representation of$Z^n$and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to t…

Statistics and ProbabilityDiscretizationapproximation schemeMalliavin calculus01 natural sciences010104 statistics & probabilityconvergence rateMathematics::ProbabilityConvergence (routing)random walk approximation 2010 Mathematics Subject Classification: Primary 60H10FOS: MathematicsApplied mathematics0101 mathematicsBrownian motionrandom walk approximationMathematicsstokastiset prosessitSmoothness (probability theory)konvergenssiApplied Mathematics010102 general mathematicsProbability (math.PR)Backward stochastic differential equationsFunction (mathematics)Random walkfinite difference equation[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Rate of convergencebackward stochastic differential equations60G50 Secondary 60H3060H35approksimointidifferentiaaliyhtälötMathematics - Probability
researchProduct